1. The normal at the point $(bt_1^2, 2bt_1)$ on a parabola meets the parabola again in the point $(bt_2^2, 2bt_2)$, then

(a)
$$t_2 = t_1 + \frac{2}{t_1}$$

(b)
$$t_2 = -t_1 - \frac{2}{t_1}$$
 [2003]

(c)
$$t_2 = -t_1 + \frac{2}{t_1}$$

(d)
$$t_2 = t_1 - \frac{2}{t_1}$$

Solution: -

1. **(b)** Equation of the normal to a parabola $y^2 = 4bx$ at point

$$(bt_1^2, 2bt_1)$$
 is $y = -t_1x + 2bt_1 + bt_1^3$

As given, it also passes through $\left(bt_2^2, 2bt_2\right)$ then

$$2bt_2 = -t_1 bt_2^2 + 2bt_1 + bt_1^3$$

$$2t_2 - 2t_1 = -t_1(t_2^2 - t_1^2) = -t_1(t_2 + t_1)(t_2 - t_1)$$

$$\Rightarrow 2 = -t_1(t_2 + t_1) \Rightarrow t_2 + t_1 = -\frac{2}{t_1}$$

$$\Rightarrow t_2 = -t_1 - \frac{2}{t_1}$$